

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Website

The site is built with Docusaurus 2 [https://v2.docusaurus.io/]

Installation

$ npm install

Local Development

$ npm run start

Build

$ npm run build

Deployment

A Github action will build the website when you commit changes to the repository

id: tools
title: Tools/Resources/Technologies
author: Shah Nafis Rafique
tags: [tools, resource, technologies]

These are the tools/resources/guides I used for the project (V3) that I would like to mention. Please check the respective package.json for all the packages.

	Next.js [https://nextjs.org/] - Is really the core of the project and dictated alot of the design structure and allowed for some really neat things such as server side rendering.

	React [https://reactjs.org/] - The library that Next.js uses. React is amazing. Theres really nothging more that I can say other then that.

	Material UI [https://material-ui.com/] - While having a functional website is cool, having a nice looking one is also good.

	Express [https://expressjs.com/] - Makes web servers in Node.js really easy

	React-Hook-Forms [https://react-hook-form.com/] - Makes form creation really easy and helped with allowing for modular forms for Catalogs.

	MongoDB Atlas [https://www.mongodb.com/cloud/atlas] - Which is a Cloud MongoDB service by MongoDB which removes one extra thing that I dont have to worry about.

	Mongoose [https://mongoosejs.com/] - For adding Object Relation Modeling to a NoSQL database like MongoDB.

	Auth0 [https://auth0.com/] - Which allows for Oauth login with Gmail and other services and removes one other thing that I dont have to worry about since they handle security for me.

	Docusaurus V2 [https://v2.docusaurus.io/] - Which is the package that created this site that you are reading on. Its pretty cool and looks really nice.

	Commander [https://github.com/tj/commander.js#readme] - Which makes making CLI’s easy

	Inquirer [https://www.npmjs.com/package/inquirer] - For making getting user input in a CLI easy.

	TypeScript [https://www.typescriptlang.org/] - For allowing me to use new JavaScript features before they come out, adding static typing and helping me catch a few errors before hand.

	unDraw [https://undraw.co/illustrations] - For cool art (used on docs site).

	manypixels [https://www.manypixels.co/gallery/] - For cool art (used on docs site).

	jest [https://jestjs.io/] for unit testing

	eslint [https://eslint.org/] for linting

	prettier [https://prettier.io/] for making the code look nicer

	react-json-pretty [https://www.npmjs.com/package/react-json-pretty] for showing json data in a page.

	express-validator [https://www.npmjs.com/package/express-validator] for body/param/query validation.

	Brad Traversy [https://www.youtube.com/user/TechGuyWeb/featured] - He is a YouTuber that does videos on programming topics,
mostly webdev. He has a repo
here [https://github.com/bradtraversy/devcamper-api] about building a backend
with node.js for a fullstack prokject and a udemy course for it here [https://www.udemy.com/course/nodejs-api-masterclass/]. He also has a video/guide on node js deployment here [https://www.youtube.com/watch?v=oykl1Ih9pMg] with instructions here [https://gist.github.com/bradtraversy/cd90d1ed3c462fe3bddd11bf8953a896]

id: code_of_conduct
title: Contributor Covenant Code of Conduct
sidebar_label: Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at ebgoldst@uncg.edu. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

id: indexDoc
title: Coastal Image Labeler
sidebar_label: Introduction

Project Overview

[image: ../_images/77d9957610a7905d8c8ce9c56b79f23da3326ae5.svg]Documentation [https://uncg-daisy.github.io/Coastal-Image-Labeler/]
[image: ../_images/Coastal-Image-Labeler.svg]Last Commit [https://github.com/UNCG-DAISY/Coastal-Image-Labeler/commits/master]
[image: ../_images/226252747.svg]DOI [https://zenodo.org/badge/latestdoi/226252747]
[image: ../_images/badge.svg]Actions Status1 [https://github.com/UNCG-DAISY/Coastal-Image-Labeler/actions]
[image: ../_images/badge1.svg]Actions Status2 [https://github.com/UNCG-DAISY/Coastal-Image-Labeler/actions]

Generally, the Coastal Image Labeler presents users with
coastal images to be labeled using a given set of questions. We designed the labeler to be hosted on a virtual machine and exposed via a web address. Labels provided by the user are written to a database and exported later by a user or admin.

There are two general roles in this project:

	An Admin — who uploads images to be labeled, developing questions for the labeler to ask, assigning sets of images to users, managing the VM that hosts the project, and exporting data from the database.

	A Labeler — who navigates to the website, logs on to the server, labels images, and can download their individual labels.

The Coastal Image Labeler Documentation is focused on:

	Describing the goals of the project and our Code of Conduct.

	Documenting the underlying source code for the labeler. This is intended to be most useful for an Admin — see the Code Documentation section.

	Documenting the use of the deployed labeler [https://coastalimagelabeler.science/], which helps labelers understand the how to label images — see the Labeling Documentation section.

Project Goals

	The Coastal Image Labeler is designed to collaboratively label
coastal images and then provide these labeled images as open data (FAIR) for
general community use.

Some FAQs:

	Why labeling images?

	Labeled images are important for supervised machine learning research. There are many well known labeled image databases (e.g., ImageNet [http://www.image-net.org]), but these existing databases tend to focus on general features (e.g., cats, dogs, horses, etc.). Our goal with this project is to develop a discipline-specific database of labeled images that is relevant for coastal scientists.

	Why not use an existing tool for labeling?

	Many good labeling tools already exist, but our goal with this project is to
create a tool for collaborative, asynchronous labeling. Additionally,
we wanted a tool to easily accommodate multiple users labeling a single
image (to ensure correct labeling via consensus).

	Isn’t this similar to iCOAST from the USGS?

	Yes — it is definitely one of the inspirations for this project. The USGS iCOAST [https://www.usgs.gov/centers/spcmsc/science/icoast-did-coast-change?qt-science_center_objects=0#qt-science_center_objects] project is an example of a labeled coastal database for storm impacts that was labeled collaboratively. We are extending this idea in at least 2 ways: First, the Coastal Image Labeler does currently host NOAA post-storm images (we have released some data already [https://doi.org/10.6084/m9.figshare.11604192.v1]), but any image can be loaded and any question set can be created (for example, we have already labeled wave-scarp interaction images [https://doi.org/10.6084/m9.figshare.12765494.v1], and images of beach state). Second, this project is very closely tied to machine learning — crowdsourcing labels for coastal images to advance ML applications to Coastal science. One clear example of this linkage is — for some image catalogs — the images a user labels are shown to them in a specific order to help the ML algorithm learn samples that are confusing (i.e., active learning [https://en.wikipedia.org/wiki/Active_learning_(machine_learning)]).

id: cicd
title: CI/CD
sidebar_label: CI/CD

V3 Dashboard uses Github Actions for CI/CD. Currently there are 2 workflows.

	Workflow to deploy docs site

	Workflow to run unit tests

Both are under .github/workflows

Docs workflow

This one requires a secret key to be set up to allow github actions to deploy the doc site.

	Use Git Bash and run

ssh-keygen -t rsa -b 4096 -C "put email here"

	This will, on windows, create it at C:\Users\USER\.ssh

	DO NOT enter a passphrase.

	Remember to keep track of the file names created, by default they are id_rsa.pub for the public key and id_rsa for the private key, the file names are important later on.

	Go to the deploy keys section in the settings of the repo here [https://github.com/UNCG-DAISY/Coastal-Image-Labeler/settings/keys] and add the public key file of id_rsa.pub. For the key name put the file name without the extension and check the box for write access. Like so

[image: public key]pubkey

	Then go to the secrets tab and a new secret called GH_PAGES_DEPLOY with its value as the private key file id_rsa. Like so.

[image: repo secrects]repoSecrects

If the github action workflow is set up correctly, everything should run fine.

Unit Test

This requires that the mongoURI be set up. Going here [https://github.com/UNCG-DAISY/Coastal-Image-Labeler/settings/secrets] and entering the mongoURI as MONGO_URI. The value is mongodb://localhost:27017 which means connect to the local mongoDB instance which the workflow sets up, however perhaps later a cloud mongodb could be used

[image: repo secrects]repoSecrects

id: future
title: Future
sidebar_label: Future

As great of a jump V3 was from V2 there are always things that can be improved or experimented with for V4.

CMS

	Alot of the current features and ideas below could be done using a Content Management System. This would come from Strapi [https://strapi.io/] which is an open source headless CMS.

	Some of the features are

	Image resize on upload

	public or authenticated required routes/rules

	possible integration with Auth0 here [https://github.com/Heziode/strapi-auth0-example].

	Admin dashboard

	Provides login system

Monorepo

	One source of potential issues is the duplicated Type interfaces across the CLI, frontend, and backend. Using something like Nx [https://nx.dev/] from NRWL and having a Monorepo could help prevent potential issues and allow for future scalability.

CLI

	CLI subcommand called doctor(name sounds cool to me) that would help find errors in the DB (Such as an archive refers to a catalog that doesnt exist or an image refers to an archive that doesnt exist, image counts being wrong, or tags missing data).

	Unit Testing for CLI.

	Multithreading?

Frontend

	Unit Testing for frontend on some of the parts that are deterministic.

	Pixel annotation with React Image Annotate [https://github.com/UniversalDataTool/react-image-annotate].

	Add sliders as a possible question type.

	Add number field as a possible question type.

	Improve the way question sets are stored. Add ability to check/create new question sets in admin page.

	Admin page to show latest tags, update users, and other adminy stuff 🤷 ¯_(ツ)_/¯ .

	Can be partially implemented using a CMS

Server

	Simplify some of the middlewares. Some are a little bit messy in terms of logic.

	Auto inser user db data via express

	Enforce user tag role checks on server rather then on the nextjs server from getServerSideProps.

	Can be partially implemented using a CMS

Improve data/resource sharing between CLI and dashboard

	One issue noted was there was duplicate code in the CLI and dashboard.

	There should be a way to make it so they share the code (other then using symlinks, which is not sustainable as what happens if someone forgets to add the symlink)

	Can be solved with using a Monorepo setup.

GitHub Actions

	Create file for unit testing configs, such as user data and archives that will be used through out the test to unsure none of the tests step on each other.

	Auto deploy site whenever master get pushed to.

	Auto deploy dev site whenever beta gets pushed to.

VM

	Stream log files to other locations.

	Notify if the site goes down or if an error happens.

TypeScript

	Improve the way types are shared across the dashboard and CLI.

	Can be used by setting up a Monorepo

Experimental

	Make the DB be local instance instead of MongoDB Atlas.

	Would probably mean that users would have to make a local account and CAN NOT signin with Google/Facebook/Github/etc.

	Use a SQL database and maybe use Redis for caching/session management/message passing.

	CMS might be able to help with this

	Dockerize.

	Kubernetes.

	Dark theme 🌑 and Light theme ☀️ or maybe other themes/user themes.

	Redux for state management. (Maybe)

	Progressive image loading. (More or less done now)

	Archives within archives with in archives….etc.

	Images can have groups assigned to them (like tags on discord). So a image could have the Florence group and FlorenceArchive group.

	A user would need to have (atleast one or all, which ever idea works out best) inorder to tag an image. The group can have a rank (1,2,3,4…) and so images would be grouped by the rank 1 groups first then rank 2 and so on.

	Only one group per rank for an image (cant have say 2 rank 3 group labels).

id: overview
title: Code Documentation
sidebar_label: Overview

The following set of documentation is focused on the code base, providing steps to maintain the current system.

V2 to V3 Changes

	TypeScript used across entire project.

	Expanded frontend components for easier extension.

	Created more atomic middlewares.

	Utilized Mongoose hooks (on save update image count per archive/catalog or for validation).

	Addition of new models (Tag, AssignedImages).

	Use of PM2 for running server and writing logs.

	Better use of LetsEncrypt and NGINX along with new HTML pages for when the site is under maintenance.

	Better Logging with log type, time and response time for routes

	Auth0 enters users into DB on first signup, gives tagger role and assigns default catalog.

	Unit Tests.

	Use of GitHub actions for Docs redeploy and running Unit Tests

	Path Alias (instead of having ../../../../components, it can be just @/components/)

id: packages
title: Packages
sidebar_label: Packages

This is an explanation of the more important packages in the project Seperated by Server/Site and CLI packages.
Additionally you can read more about the packages on the blog post here.

Server/Site

These are the notable packages that are used in the project. A full list can be found in the corresponding package.json files.

@material-ui/core

This is the UI component library used for the overall style of the website. The
website for the package is here [https://material-ui.com/]. It follows the
material UI principles laid out by Google.

dotenv

This package allows for the use of .env files which contain environment
variables such as database passwords, which ports the host server is on,
or if the server is in development or production mode. However the main .env files are loaded by Nextjs where dotenv is used for unit testing.

express

This is one of the most critical packages. It is a web framework for node.js
that simplifies code alot. It’s great, so much so I will link it here [https://expressjs.com/].

express-session

Related to express package here. Handles session management and tokens.

express-validator

This package help abstract out request body and param validation to ensure that the correct data is sent.

mongoose

Adds object modeling for MongoDB documents. MongoDB is a noSql database so
there isn’t any structure to entries (anything can be added to anything).
Mongoose adds some structure to those entries such as making sure certain
fields exists or only have certain data types. Found here [https://mongoosejs.com/]

next

A reactJs framework that allows for server side rendered pages. Found here [https://nextjs.org/]

passport

Authentication package. Found here [http://www.passportjs.org/].

passport-auth0

Related to the above when using the Auth0 method of signin, which can be found here [https://auth0.com/].

react

A JavaScript library for building user interfaces, very important, found here [https://reactjs.org/]

CLI

Some of the packages carry over from the server/site such as the database packages of MongoDB and Mongoose.

Commander

The main package that sets up the command line interface.

Configstore

Allows to store data passed to the CLI, such as the MongoDB URI.

Inquirer

Allows for user input into the CLI

Unit Testing, Linting, Formatting

One major change for v3 Dashboard was the addition of unit testing, linting and formatting of code.

Jest

Unit test package.

node-mocks-http

Allows creation of fake Request and Response Objects for unit testing.

eslint

Performs linting to help keep code up to good practices and checks syntax.

prettier

Formats code.

husky

Runs linting and formatting commands on commits and push events.

id: projectStructure
title: Project Structure
sidebar_label: Project Structure

export const Highlight = ({children, color,text}) => (<span style={{
backgroundColor: color,
borderRadius: ‘2px’,
color: text,
padding: ‘0.2rem’,
}}>{children}

 id: tools title: Tools sidebar_label: Tools baseUrl: Coastal-Image-Labeler

id: tools
title: Tools
sidebar_label: Tools
baseUrl: Coastal-Image-Labeler

I would like to source all the important tools that I have used as most of them
are open source and have great documentation and communities that have really
helped me with this project.

I created a blog post here. I created this page just because
people will most likely check here for resources.

 id: auth0 title: Setup sidebar_label: Setup

id: auth0
title: Setup
sidebar_label: Setup

Auth0, found here [https://auth0.com/], is the provider for session
management. Auth0 permits users to signin using Gmail, GitHub,
LinkedIn and Microsoft accounts, or just make a new username/password. Auth0
handles all the security features (e.g., session management, user storing in
the database or other risky aspects related to sessions).

Default .env file

All the .env files are under src/dashboard/site. There should already be a filed called src/dashboard/site/.env which serves as the template to list all the used variables along with some defaults if possible. This is what it looks like

NODE_ENV = "development"
NEXT_PUBLIC_NODE_ENV = "development"
NEXT_PUBLIC_PORT = 8080
NEXT_PUBLIC_PROTOCOL = 'HTTP'
NEXT_PUBLIC_DOMAIN_NAME = 'localhost:8080'
NEXT_PUBLIC_LOGGING = true

MONGO_URI = ""

AUTH0_DOMAIN = ""
AUTH0_CLIENT_ID = ""
AUTH0_CLIENT_SECRET = ""
AUTH0_CALLBACK_URL = ""
BASE_URL = ""

NEXT_PUBLIC_Error_Image = "C:/Users/Skool/Desktop/Error.png"
NEXT_PUBLIC_Time_Nextjs_Calls = false

	Any env variable starting with NEXT_PUBLIC_* will be available on both the site and server. Without this they will only be available on server.

	For example NEXT_PUBLIC_NODE_ENV is used to simply display the node env on the site without having to do any API calls

	NEXT_PUBLIC_Error_Image Is the error image to show if for whatever reason images can be found

	NEXT_PUBLIC_Time_Nextjs_Calls By default the response time logging function only records the response times for calls to /api/*. With NEXT_PUBLIC_Time_Nextjs_Calls as true the logging function will show the response times for every other call which is generally nextjs calls to load the page.

	NEXT_PUBLIC_LOGGING Enables logging.

Creating .env files

There are 2 .env files that need to be created with an optional 3rd if you want to run unit tests on the local machine. The 2 mandatory files are src/dashboard/site/.env.development.local and
src/dashboard/site/.env.production.local. The 3rd optional file is src/dashboard/site/.env.test.local.

:::warning
As a note any file with the format .env.*.local will be ignored by git.
:::

Values for the Auth0 variables can be found by following here

Auth0 Setup

There are 2 Auth0 Tenants that are being used. One is for production and the other is for development. The reason being is that each inserts a User on first signin into the database. This is done through the use of rules.

	The rules section is under https://manage.auth0.com/dashboard/us/NAME-OF-TENANT/rules

	The code for the rule is as follows. Can be found at src/auth0

async function (user, context, callback) {

 //If user has already logged in (as in accounts already made) or just refreshing token, do nothing
 if (context.stats.loginsCount > 1 || context.protocol === 'oauth2-refresh-token') {
 return callback(null, user, context);
 }
 const Mongoose = require('mongoose@5.6.11');

 const userSchema = new Mongoose.Schema(
 {
 catalogs: {
 type: [Mongoose.Types.ObjectId],
 default: [],
 },
 dateAdded: {
 type: Date,
 default: Date.now(),
 },
 roles: {
 type: [String],
 default: ["tagger"],
 },
 userId: {
 required: [true, 'UserId not passed'],
 unique: true,
 type: String,
 },
 userName: {
 required: [true, 'Username not passed'],
 unique: true,
 type: String,
 },
 },
 {
 toJSON: { virtuals: true },
 toObject: { virtuals: true },
 }
);

 const UserModel = Mongoose.model('User', userSchema);
 const CatalogModel = Mongoose.model('Catalog', new Mongoose.Schema({
 name: {
 type: String,
 required: [true, 'Please provide catalog name'],
 unique: true,
 maxlength: [128, 'Name can not be longer than 128 characters'],
 },
 }));

 //MAKE SURE TO PUT IN THE MONGODB URI
 await Mongoose.connect('XXXX', {
 useNewUrlParser: true,
 useCreateIndex: true,
 useFindAndModify: false,
 useUnifiedTopology: true,
 });

 const demoCatalog = await CatalogModel.findOne({name: "Demo"});

 await UserModel.create({
 userId: user.user_id,
 userName: user.name,
 dateAdded: Date.now(),
 catalogs:[demoCatalog._id]
 });
 // TODO: implement your rule
 return callback(null, user, context);
}

:::warning

	Make sure to have a catalog called demo as a default catalog to assign, or remove code if there is none.

	Make sure to place the Mongodb URI
:::

 id: rules title: Rules sidebar_label: Rules

id: rules
title: Rules
sidebar_label: Rules

One major change with v3 dashboard was the introduction of a 2nd Auth0 tenant. The 2nd Tenant acts as a dev tenant. The reason is whenever a new user signs up, they are entered into the database. The Production tenant enters them into the production database and the dev tenant enters them into the dev database.

The code for the rule is at src/auth0/signupInsertWithMongoose.js. The only thing you have to fill in is the DB URI. The rule has minimal code to create a user, and search archives to find the demo catalog by name and assign it to the user.

:::warning
Dont save the DB URI on to the repo
:::

 id: auth0Values title: Values sidebar_label: Values

id: auth0Values
title: Values
sidebar_label: Values

Finding values on Auth0

After logging into Auth0, you can find values:

Go to my Applications and select the correct one.
[image: Applications6]app6

The secret values can be found here.
[image: Applications5]app5

And then set the callback URLS. Here they are localhost because of testing but for production they would be the machines IP.
[image: Applications7]app7

 id: setup title: Setting up CLI sidebar_label: Setting up CLI

id: setup
title: Setting up CLI
sidebar_label: Setting up CLI

The CLI is called cil-import. It is found at src/cli. Before using the CLI it is recommended to always build it to ensure the latest version is being used.

Build CLI

	Go to src/cli

	npm install

	run sudo npm run link to create the CLI.

	Check with cil-import -V that the version is the same as package.json

 id: overview title: Overview sidebar_label: Overview

id: overview
title: Overview
sidebar_label: Overview

These are the following availible commands for the cil-import CLI. Before using please follow the instructions here to setup the CLI.

Main Commands

MongoURI

Set

:::info Add MongoDB URI

Set the MongoURI for db connection

cil-import mongoURI set

:::

Show

:::info Show MongoDB URI

Show the MongoURI for db connection

cil-import mongoURI show

:::

Test

:::info Test MongoDB URI

Test the MongoURI for db connection

cil-import mongoURI test

:::

Remove

:::info Remove MongoDB URI

Remove the MongoURI

cil-import mongoURI remove

:::

Catalog

Add

:::info Add a catalog,and archives of that catalog, and images of that archive to db

Adding images

cil-import catalog add --path PATH_TO_JSON

--path - is required
:::

For ease of use, a JSON file is needed to help create the catalogs. The format is as follows

{
 "path":{
 //This path is used to find archives and images
 "original":"xxx",
 "compressed":"xxx"
 },
 "name":"xxx",
 "taggable":true,
 "catalogInfo":{
 "year": 2020,
 "link":"xxx",
 "description":"xxx"
 },
 //Images to add
 "imageFormat":[".jpg",".jpeg"],
 //Make sure this question set exists
 "questionSet":"xxx",
 //Either leave this field out to have random order, or define it like so
 "imageServeOrder":{
 "type":"sequential",
 "data": {
 //If an archive doesnt appear in this json, it will use random order
 "nameOfArchive":["nameOfImage.ext"]
 }
 }
}

:::caution
If you are going to copy this remember to remove comments, JSON doesnt like comments
:::

Here are some stats of how long it takes to enter into the DB.

Florence 141 seconds 30492 images = 216 img/secDorian 85 seconds 18425 images = 216 img/secMichael 45 seconds 9600 images = 213 img/secTairua 22 seconds 3851 images = 175 img/sec

Delete

:::info Deletes a catalog with given _ID

Deleting catalog

cil-import catalog delete --id CATALOG_ID

--id - is required, ID of catalog
:::

Archive

Add

:::info Add archives and their images to existing catalogs

Adding images

cil-import archive add --path PATH_TO_JSON

--path - is required
:::

The JSON file is as follows

{
 "archives":[
 {
 //The below 2 will be used to check if the archive already exists
 "catalogId":"5f5c02df833a4f05a80d774e",
 "archiveName":"american",
 "imageFormat":[".jpg",".jpeg"]
 }
]
}

Delete

:::info Deletes a archive with given _ID

cil-import archive delete --id ARCHIVE_ID

--id - is required, ID of archive
:::

 id: connection title: Connection sidebar_label: Connection

id: connection
title: Connection
sidebar_label: Connection

IP Whitelisting

There are a few IP’s to whitelist.

	IP’s of vm.

	IP’s of developers

	IP’s of Auth0

The Auth0 IP’s are found here [https://auth0.com/docs/security/whitelist-ip-addresses]

35.167.74.121,
35.166.202.113,
35.160.3.103,
54.183.64.135,
54.67.77.38,
54.67.15.170,
54.183.204.205,
35.171.156.124,
18.233.90.226,
3.211.189.167,
18.232.225.224,
34.233.19.82,
52.204.128.250,
3.132.201.78,
3.19.44.88,
3.20.244.231

[image: IP Whitelist]app6

Another option is to allow connection from all IP’s, but that reduces security.

 id: models title: Models sidebar_label: Models

id: models
title: Models
sidebar_label: Models

A major change in the v3 Dashboard is the structure of the database. More models where added to help with performance and creating queries.

Terminaology

I will draw comparisions from MongoDB to SQL terms. Starting from the bottom,

	Row in SQL is called a Document in MongoDB.

	For example we have a Document for image P25959661.jpg

	Table in SQL is called a Collection in MongoDB.

	For example we have a Collection for all images

	Schema in SQL is a Namespace in MongoDB.

	For example we have a Namespace called dev or one called production.

Models

The following are the TypeScript interfaces for each model. If a key has a ? next to it means its optional.

Catalog

The Catalog object is the overarching model that contains the archives which in
turn contains the images. It also contains the questions that are applied to all
images of archives that are part of this catalog. This is the types of the
Catalog.

export interface CatalogDocument extends Document {
 dateAdded?: Date
 name: string
 path: {
 original: string
 compressed?: string
 //This is here so that any path can be added, for example like gradcam or aux paths
 [id: string]: string
 }
 catalogInfo?: CatalogInfo
 taggable: boolean
 questionSet: ObjectID | string
 imageServeOrder?: {
 type?: 'random' | 'sequential'
 data?: any
 }
 totalImages?: number

 updateImageCount(): Promise<void> //Function to update totalImages
}

There is a new noteable field called imageServeOrder that defines how to serve imags. By
default it is “random” however if the json file used for import via the CLI is like so

{
 "path":{
 "original":"xxx",
 "compressed":"xxx",
 "gradcam": "XXX",
 "aux": "XXX"
 },
 "name":"xxx",
 "taggable":true,
 "catalogInfo":{
 "year": 2020,
 "link":"xxx",
 "description":"xxx"
 },
 "imageFormat":[".jpg",".jpeg"],
 "questionSet":"xxx",
 //This part right here
 "imageServeOrder":{
 "type":"sequential",
 "data": {
 //archive name
 "archive1":["image1.jpg","image2.jpg","image3.jpg","image4.jpg"]
 }
 }
},

Then images of archive1 will be assigned in that order (image1 is assigned first, then image2 then image3 and so on). NOTE

:::caution
If there are other archives such
as archive2 that isnt defined then that archive will use random assignment.
:::

Archives

These are subfolders of the Catalogs and is originally in place due to how the
NOAA images where downloaded. They serve no other purpose other then to group
images up and serve as a link between Catalogs and Images

export interface ArchiveDocument extends Document {
 dateAdded?: Date
 name: string
 path: {
 original: string
 compressed?: string
 }
 catalog: ObjectID
 taggable: boolean
 totalImages?: number

 updateImageCount(): Promise<void> //function to update totalImages
}

Images

The Image models most important fields are the tags, the tillComplete and
taggable fields. A major change is the tillComplete,finalTag,finishedTagging,and tags fields have been removed

export interface ImageDocument extends Document {
 archive: ObjectID
 dateAdded?: Date
 name: string
 path: {
 original: string
 compressed?: string
 }
 taggable: boolean
}

Question Set

Of the current models, the question set is the only one that is NOT checked.
It serves simply as a guideline for admins to use. Due to this nature it is
HIGHLY reccomended to make sure the documents for Question Sets are correct
and is best to copy an existing one

export interface QuestionSetDocument extends Document {
 name: string
 description: string
 questions: any[] | QuestionSetQuestions[]
}

These are some Typescript type annotations to help understand the structre of each question type. Anything with ?: means its optional, else its required

There are 4 types of questions, Radio,Checkbox,Quick submit button and Textfield.

type QuestionSetQuestions = TextFieldQuestion | ButtonSubmitQuestion | CheckboxQuestion | RadioQuestion

type RadioQuestion = {
 type: "radioGroup",
 required: boolean,
 label: string,
 docLink: string,
 key: string,
 errorMessage: string,

 //This means array of json objects, with each object having a name and value
 buttons: {
 name: string,
 value: string
 }[]
}

type CheckboxQuestion = {
 type: "checkboxGroup",
 required: boolean,
 label: string,
 docLink: string,
 key: string,
 errorMessage: string,

 min?: number,
 max?: number

 buttons: {
 name: string,
 value: string
 }[]

 //This spacing is option. If you have this, it makes it so that the checkboxes
 //show up in a nice organized grid pattern. For example you would something like
 //spacing: {lg:3} which is probably the best one the number has to be
 //between 1 and 12 (1 usually doesnt work) and the lg,md,sm,and xs is a breakpoint.
 //lg is large, it will apply the spacing on large screens, if the screen gets
 //smaller then it doesnt apply it and so the checkboxes try to just fit
 //on the screen rather then try to be organized in straight columns and rows.
 spacing?:
 | {
 lg: number
 }
 | {
 md: number
 }
 | {
 sm: number
 }
 | {
 xs: number
 }
}

type ButtonSubmitQuestion = {
 type: "buttomSubmit",
 required: boolean,
 label: string,
 docLink: string,
 key: string,
 buttons: {
 label: string,
 tag: any,
 key: string
 }[]
}

type TextFieldQuestion = {
 type: 'textField'
 required: boolean
 label: string
 docLink: string
 key: string
 multiline: boolean
 rows: number
}

User

Finally there is the user model which is more or less the same

export interface UserDocument extends Document {
 username: string
 catalogs: [ObjectID]
 dateAdded: Date
 roles: string[]
 userId: string
}

Assigned Image

This is one of the newer models. It serves to store the currerntly assigned image of a (user,archive) pair. This model requires that imageId,archiveId,userId be given. The remaining fields are automatically created

export interface AssingedImageDocument extends Document {
 imageId: ObjectID
 catalogId?: ObjectID
 archiveId?: ObjectID
 userId: ObjectID
 date: Date
 archive?: ArchiveDocument
 catalog?: CatalogDocument
}

Tag

Another new model. This model takes the data from the tags field of an image and places each tag as a new entry. This is done for many reasons. Firsty it makes it easy to get a list of images that have been tagged, since every entry is a tag of an image that has been tagged. It also ensures that certain pieces of information are recorded such as userId and imageId

export interface TagDocument extends Document {
 imageId: ObjectID
 catalogId?: ObjectID
 archiveId?: ObjectID
 userId: ObjectID
 tags?: any
 date: Date
 ignoreFields?: string[]
 image?: ImageDocument
}

Notification

This is global messages to show to users.

export interface NotificationDocument extends Document {
 message: string
 dateAdded: Date
}

It just has a message and the date of the message. On the home page it shows the recent message as the top one.
The message can even have html and css inside it, for example like so.

{
 "dateAdded": "2020-10-19T02:50:20.406+00:00",
 "message": "test."
}

Namespaces

As mentioned before Namespaces are like Schemas in SQL. Generally there are 3, a
dev namespace,a production namespace and test namespace.

 id: overview title: Full Deployment Cycle sidebar_label: Full Deployment Cycle

id: overview
title: Full Deployment Cycle
sidebar_label: Full Deployment Cycle

Pre VM Tasks

	Create Auth0 Applications. Create the 2 Tenants(development and production).

	Create database with proper IP whitelisting as mentioned here

VM Install

There are a few packages/things to install.

Node js

sudo apt update
sudo apt install nodejs
sudo apt install npm
nodejs -v

curl -sL https://deb.nodesource.com/setup_14.x | sudo -E bash -
sudo apt-get install -y nodejs

PM2

This will require node js to be installed. PM2 [https://pm2.keymetrics.io/] is a node js package that runs the node server in the background

npm i pm2 -g
pm2 install pm2-logrotate

:::caution Log Folder
Looking at src/dashboard/ecosystem.config.js Log files will be created at ../../../../pm2Logs/${timestamp}/ where timestamp is month-day-year_hour.minutes.seconds. Please make sure to create the folder ../../../../pm2Logs/. PM2 will do the rest.
:::

Code-Server

Optional

Found here [https://github.com/cdr/code-server]. Basically run the commands

curl -fsSL https://code-server.dev/install.sh | sh

And then set up the config in /home/YOUR_USER_NAME/.config/code-server. Mine looks like

auth: password
password: PUT UR PASSWORD HERE
host: 0.0.0.0
port: 1337

Make sure the port is setup in the firewall

Jpegoptim

repo [https://github.com/tjko/jpegoptim] and
usage [https://vitux.com/optimize-jpeg-jpg-images-in-ubuntu-with-jpegoptim/].
The rest of the jpegoptim stuff is handled by the bash scripts in Coastal-Image-Labeler\src\cli\bash

NGINX

This is a reverse proxy that runs on ports 80 and 443 and redirects traffic to
the node server so that it doesnt have to run in sudo mode.

sudo apt update
sudo apt install nginx

Check to see its running with

sudo systemctl status nginx

Certbot

sudo add-apt-repository ppa:certbot/certbot
sudo apt-get update
sudo apt-get install python-certbot-nginx

VM Setup

	Setup NGINX here and Certbot here

	Go to Coastal-Image-Labeler/src/dashboard and install dependencies with npm install

	Create the .env.*.local files like here, get their values like here.

	Run the server with npm run pm2 which will build and start the site in production mode. If need to run the site in development mode, run npm run dev.

As a note, sudo pm2 list will show all pm2 processes. To stop/delete the server type

sudo pm2 stop all
sudo pm2 delete all

so that next time theres a clean restart.

Restarting Server With New Changes

After running git pull you can simply run

sudo npm run pm2:restart

which will end the current pm2 process (stops and deletes) and then
builds and starts the site/server.

 id: path title: Add new path to Catalog, Archive, Image sidebar_label: Add new path

id: path
title: Add new path to Catalog, Archive, Image
sidebar_label: Add new path

The API routes for /api/image/:imageId/:type allow for any string to be passed for type. For example

/api/image/:imageId

or

/api/image/:imageId/original

will return the image using the original path. Or using

/api/image/:imageId/compressed

will return the compressed path of the image.

These can be added at insertion time via the CLI, as seen here under the path key. Any key:string pair can be added. However there has to be some work done to ensure that the CLI and server work properly. This method has been choosen as it is the most type strict.

Edit the CLI

We have to tell the CLI that the new added path is a valid path. Go to Coastal-Image-Labeler\src\cli\src\utils\pathSchema.ts add the new path you would like to the
array. For example I will add the testingCoolNewPath as a key.

const keys = ['compressed', 'gradcam','testingCoolNewPath']

//rest of the file is here

And thats it.

Edit the Dashboard

This is the exact same thing. Go to Coastal-Image-Labeler\src\dashboard\server\utils\pathSchema.ts

const keys = ['compressed', 'gradcam','testingCoolNewPath']

//rest of the file is here

And that’s it, the server and CLI will recognize the new path on restart/rebuild.

 id: sandbox title: Sandbox sidebar_label: Sandbox

id: sandbox
title: Sandbox
sidebar_label: Sandbox

The sandbox file (Coastal-Image-Labeler\src\dashboard\server\sandbox.ts) is used to access and edit the database within Node.js to have all the bells and whistles that come with it (Such as Mongoose). This is so that you dont have to direclty connect to the database and interact with that, but rather through the same layer that the dashboard does. It can be ran with npm run sandbox and has all the imports needed to do basic stuff like querying.

This is the basic code for the sandbox

import 'module-alias/register'
// import * as Types from '@/interfaces/index'
import dotenv from 'dotenv'

// Load env vars
dotenv.config({
 path: './.env.sandbox.local',
})

import { connectDB, closeConnection } from './db'
import { log } from '@/utils/logger'
import { RegisterModels, RegisterModelDefaults } from '@/models/index'

//Remember if some modles are not used, make sure to comment them out.
//THe linter will cry about unused imports
import { ArchiveModel } from '@/models/Archive'
import { AssignedImageModel } from '@/models/AssignedImages'
import { CatalogModel } from '@/models/Catalog'
import { ImageModel } from '@/models/Image'
import { QuestionSetModel } from '@/models/QuestionSet'
import { TagModel } from '@/models/Tag'
import { UserModel } from '@/models/User'

async function main() {
 await connectDB()

 RegisterModels()
 await RegisterModelDefaults()

 await sandbox()

 await closeConnection()
}

async function sandbox() {
 log({
 message: 'Starting sandbox function',
 type: 'ok',
 })

 const [
 archiveRes,
 assingedImagesRes,
 catalogRes,
 imageRes,
 questionSetRes,
 tagRes,
 userRes,
] = await Promise.all([
 ArchiveModel.find({}),
 AssignedImageModel.find({}),
 CatalogModel.find({}),
 ImageModel.find({}),
 QuestionSetModel.find({}),
 TagModel.find({}),
 UserModel.find({}),
])

 log({
 message: `# of Archives: ${archiveRes.length}`,
 type: 'info',
 })
 log({
 message: `# of Assinged Images: ${assingedImagesRes.length}`,
 type: 'info',
 })
 log({
 message: `# of Catalogs: ${catalogRes.length}`,
 type: 'info',
 })
 log({
 message: `# of Images: ${imageRes.length}`,
 type: 'info',
 })
 log({
 message: `# of Question sets: ${questionSetRes.length}`,
 type: 'info',
 })
 log({
 message: `# of Tags: ${tagRes.length}`,
 type: 'info',
 })
 log({
 message: `# of Users: ${userRes.length}`,
 type: 'info',
 })

 log({
 message: 'Ending sandbox function',
 type: 'ok',
 })
}
main()

 id: tags title: What Tags store sidebar_label: What Tags store

id: tags
title: What Tags store
sidebar_label: What Tags store

When an image gets tag, the tag data will store the data the user tagged, and NaN for all the other tags of the question set. For example lets say the user tags an image as follows

{
 "isSnow":true,
 "isRock":true,
 "somethingElse":"maybeSo"
}

And lets say the total number of question is 5, wit the other two being isWater and size, then in the database and in export the data will be as such

{
 "isSnow":true,
 "isRock":true,
 "somethingElse":"maybeSo"
 "isWater":"NaN",
 "size":"NaN"
}

 id: archive title: Archive sidebar_label: Archive

id: archive
title: Archive
sidebar_label: Archive

/

This is the general querying route for the archive model. For example

/api/archive?sort=-name

Will return all the archives sorted in reverse by name

/api/archive?_id=abc_

Will return the archive with the _ID=abc

This is a get and post request. Post version exists to avoid browser caching

 id: assignedImages title: Assigned Images sidebar_label: Assigned Images

id: assignedImages
title: Assigned Images
sidebar_label: Assigned Images

/

This is the general querying route for the assignedImages model. For example

/api/assignedImages?sort=-name

Will return all the assignedImages sorted in reverse by name

/api/assignedImages?_id=abc_

Will return the assignedImage with the _ID=abc

This is a get and post request. Post version exists to avoid browser caching

 id: catalog title: Catalog sidebar_label: Catalog

id: catalog
title: Catalog
sidebar_label: Catalog

/

This is the general querying route for the catalog model. For example

/api/catalog?sort=-name

Will return all the catalogs sorted in reverse by name

/api/catalog?_id=abc_

Will return the catalog with the _ID=abc

This is a get and post request. Post version exists to avoid browser caching

 id: image title: Image sidebar_label: Image

id: image
title: Image
sidebar_label: Image

/

This is the general querying route for the images model. For example

/api/image?sort=-name

Will return all the images sorted in reverse by name

/api/image?_id=abc_

Will return the image with the _ID=abc

This is a get and post request. Post version exists to avoid browser caching

/:imageId/:type

Will return the image by imageId using the type path. For example

/api/image/abc/compressed

WIll return the image file of the image document with _id=abc using the compressed path

This is a get request

/:imageId

Same as above, but uses the original path

/api/image/abc

Will return the image file of the image document with _id=abc using the original path

This is a get request

 id: overview title: Overview sidebar_label: Overview

id: overview
title: Overview
sidebar_label: Overview

These are the overall routes availible.

/api/catalog - Routes for Catalogs./api/archive - Routes for Archives/api/assignedImages - Routes for images assigned to users./api/image - Routes for images./api/tags - Routes for tags./api/qset - Routes for question sets.

 id: qset title: Question Set sidebar_label: Question Set

id: qset
title: Question Set
sidebar_label: Question Set

/keys/:id

This is a route that given the question set id will return an array of the keys

/api/qset/keys/:id

https://dev.coastalimagelabeler.science/api/qset/keys/5f4940b703e72c8380a713d2

Results in

{
 "success": true,
 "message": "Header keys for question set id = 5f4940b703e72c8380a713d2",
 "data": [
 "water",
 "devType",
 "washoverType",
 "dmgType",
 "impactType",
 "terrianType",
 "additionalComments"
]
}

 id: tags title: Tags sidebar_label: Tags

id: tags
title: Tags
sidebar_label: Tags

/

This is the general querying route for the tags model. For example

/api/tags?sort=-name

Will return all the tags sorted in reverse by name

/api/tags?_id=abc_

Will return the tag with the _ID=abc

This is a get and post request. Post version exists to avoid browser caching

 id: certbot title: Certbot sidebar_label: Certbot

id: certbot
title: Certbot
sidebar_label: Certbot

Make sure to complete NGINX before.

Create Certificates

Certbot creates SSL certificates that last around 90 days

sudo certbot --nginx -d coastalimagelabeler.science -d www.coastalimagelabeler.science

OR if on the dev vm

sudo certbot --nginx -d dev.coastalimagelabeler.science

Make sure to select http to https upgrade

In either case Certbot will edit the NGINX config with the matching server_name.

Renew Certificate

To renew the certificate simply run

sudo certbot renew --nginx

Or to just dry run it

sudo certbot renew --dryrun

 id: nginx title: NGINX sidebar_label: NGINX

id: nginx
title: NGINX
sidebar_label: NGINX

A quick word about NGINX. NGINX is running on port 80 and 443 and redirects to the node.js server. In the case of port 80 it redirects to 443 which has SSL. The config file for NGINX is under /etc/nginx/sites-available with a symbolic link to /etc/nginx/sites-enabled. The symbolic link was made with

sudo ln -s /etc/nginx/sites-available/coast /etc/nginx/sites-enabled/coast

server {
	
	error_page 500 502 503 504 404 /production.custom_error.html;
	location = /production.custom_error.html {
			root /home/shahnafis/GitHub/Coastal-Image-Labeler/src/html;
			internal;
	}

	location / {
 proxy_pass http://localhost:4201; #whatever port your app runs on
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection 'upgrade';
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
 }

	server_name dev.coastalimagelabeler.science;
}

:::caution Server Name and Error Page
Remember to change the server_name at the bottom if on a different domain/subdomain and
the Error html files up top depending if on the production or development VM.
:::

This is all you have to type in for now. Certbot will edit this file later based on the server_name

Make sure to put the custom_502.html under /usr/share/nginx/html.

NGINX Commands

Test config

sudo nginx -t

Reload (needed after any change)

And then any changes requires a reload.

sudo systemctl reload nginx

 id: overview title: Setup sidebar_l